A+ A-


De paternidad, susceptibilidad y otras individualidades

Una ayuda para aprender diagnóstico genético y medicina molecular.

En esta entrega presentamos un laboratorio virtual de acceso libre que, aunque ya veterano, se ha actualizado y ampliado este año con nuevos tipos de experimentos enfocados al análisis de varios polimorfismos genéticos.

  • José C. Diez

  • Bioquímica y Biología Molecular. Dep. de Biología de Sistemas. Universidad de Alcalá.

  • Ángel Herráez

  • Bioquímica y Biología Molecular. Dep. de Biología de Sistemas. Universidad de Alcalá.

INTRODUCCIÓN

Cada vez en mayor medida, las pruebas analíticas realizadas sobre el material genético forman parte esencial del diagnóstico de algunas enfermedades, de la valoración de la propensión a otras o de su pronóstico (lo que habitualmente se denomina “factores de riesgo”), así como de la elección de fármacos en función de su eficacia prevista para un individuo concreto (“medicina personalizada” y “medicina de precisión”). La importancia de iniciar a los estudiantes en este tipo de pruebas como parte de su formación es, pues, indudable. Sin embargo, a menudo las oportunidades de abordarlas en un laboratorio docente resultan escasas.

 

Queremos en este artículo presentar una aproximación que podrá utilizarse para que los alumnos se familiaricen con estos abordajes y con las técnicas de laboratorio implicadas, más allá de una descripción teórica; antes bien, a través de la realización de prácticas virtuales pero realistas, que permiten un diseño flexible del experimento y proporcionan un resultado en consonancia con las operaciones realizadas.

 

DESCRIPCIÓN

El laboratorio virtual “Cibertorio” es una aplicación disponible como página web1 . Puede utilizarse sin más requisitos que un navegador de internet, tanto desde un ordenador como empleando una tableta (el navegador debe ser compatible con HTML5 y tener activado el uso de JavaScript). Se trata de un software de acceso libre y gratuito, bajo licencia GNU GPL2 .

 

En este laboratorio se pueden realizar experimentos con muestras simuladas de DNA, tanto de referencia (controles) como de pacientes (problemas). Dichas muestras se pueden someter a tres técnicas de análisis: digestión con enzimas de restricción, PCR y electroforesis.

 

1. FRAGMENTACIÓN CON ENZIMAS DE RESTRICCIÓN

Las muestras de DNA pueden someterse a una digestión con enzimas de restricción, disponiéndose en el catálogo previo al laboratorio de 81 enzimas diferentes así como de una disolución tampón 10x adecuada para el desarrollo de la reacción enzimática de fragmentación del DNA en secuencias específicas. Una posterior separación electroforética permitirá no solo analizar la acción de las enzimas, sino completar ensayos del tipo RFLP (restriction fragment length polymorphism, polimorfismo en la longitud de los fragmentos de restricción).

 

1.a. Hemoglobina S, drepanocitosis, anemia de células falciformes

Para plantear un diagnóstico clínico mediante ensayo de RFLP se dispone de muestras del gen de globina beta silvestre (βA) y de su variante βS responsable de la drepanocitosis y la anemia de células falciformes. El grupo de muestras incluye como referencia dos de individuos homocigóticos βAA y βSS , junto con cuatro de pacientes cuyo genotipo debe averiguarse con el ensayo.

 

1.b. Pruebas forenses

Por otro lado, puede hacerse un ensayo similar con un contexto no clínico sino legal, forense o policial, con una muestra de DNA obtenida de la escena de un delito y cinco muestras de sospechosos.

 

2. PCR

También es posible plantear experimentos en los que las muestras de DNA se utilizan en reacciones de PCR. Se dispone de varias familias de oligonucleótidos cebadores con secuencias específicas para amplificar diversos alelos de los respectivos polimorfismos. Tras la reacción de PCR gracias a una mezcla adecuada de nucleótidos, polimerasa similar a Taq y medio tamponado, se analizará el tamaño de los amplicones resultantes empleando la electroforesis. Es posible realizar una PCR múltiplex; es decir, amplificar cada muestra en un solo tubo simultáneamente con los cebadores de distintos marcadores. De nuevo, planteamos algunos experimentos de enfoque clínico y otros de interés diverso como aplicaciones prácticas de la amplificación.

 

 

2.a. Diagnóstico genético de celiaquía

El diagnóstico y el pronóstico de la enfermedad celíaca son complejos pero incluyen como uno de los indicios el análisis del genotipo en los genes HLA DQA1 y HLA DQB1. Se dispone en este laboratorio de cebadores que amplifican los alelos más comunes de estos genes polimórficos (DQA1 *01.01, *03.01 y *05.01, DQB1 *03.02 y *05.01) así como de muestras de DNA de 6 pacientes para diagnosticar en ellos los haplotipos DQ2 y DQ8 asociados a la aparición de celiaquía. Cada uno de los amplicones posee un tamaño característico que se identificará, en su caso, en la electroforesis.

 

2.b. Polimorfismo CYP450 y respuesta a fármacos

Es bien conocido el papel de la familia de enzimas citocromo P450 en el metabolismo de numerosos fármacos y de xenobióticos, así como la diferente eficacia de tales fármacos dependiendo de las formas polimórficas de estas enzimas que presenta cada individuo. El laboratorio ofrece un grupo de muestras de DNA correspondiente al gen CYP2C9 de 6 pacientes, junto con cebadores de PCR para amplificar los principales alelos de este gen polimórfico (CYP2C9 *2, *3, *4, *5 y *6).

 

2.c. Análisis de adulteración en productos lácteos

La mezcla de leche de distintas especies puede detectarse también empleando ensayos de PCR que aprovechan secuencias únicas de cada especie. Otro de los experimentos que se pueden diseñar en este laboratorio aprovecha, pues, cebadores PCR específicos para secuencias del DNA mitocondrial de vaca (Bos taurus), oveja (Ovis aries) y cabra (Capra hircus). Las muestras de DNA proporcionadas corresponden a 3 mezclas problema donde la leche de cabra puede estar adulterada con oveja o vaca. Se incluyen como referencia muestras puras de DNA de las 3 especies.

 

2.d. Ensayo de paternidad

En este ensayo se trata de evaluar la posible paternidad de varios candidatos, por comparación de su DNA con los del bebé y la madre. Para ilustrar este ejemplo de pruebas de identidad genética se hace uso de 6 marcadores STR polimórficos, subconjunto de los incluidos en CODIS (base de datos empleada por el FBI), y un marcador AMEL adicional como control ligado al sexo. Tras realizar la PCR múltiplex con los 7 marcadores se comparan los perfiles de bandas en el gel de electroforesis para averiguar quién de entre los presuntos progenitores puede ser el padre.

 

3. ELECTROFORESIS EN GEL

A partir de las mezclas resultantes de la reacción del DNA, bien con enzimas de restricción o bien mediante PCR, el laboratorio simula la separación electroforética en gel. Se dispone de geles (de agarosa y poliacrilamida) con dos porosidades o grados de reticulación diferentes. Las muestras se detectan simulando su tinción con un compuesto intercalante fluorescente, del tipo del bromuro de etidio, que se observa bajo luz ultravioleta. El análisis de la distribución de bandas y su comparación con patrones de tamaño (escalera de DNA) permite la interpretación del experimento y la obtención de conclusiones con respecto a las muestras problema analizadas.

 

4. DESARROLLO DE UN EXPERIMENTO

Un experimento típico consta de las etapas siguientes:

 

1. Obtención de los reactivos necesarios: se presenta una simulación de compañía proveedora de muestras y reactivos, con un catálogo en línea, la descripción de los productos y del instrumental y un formulario de pedido para la compra de los reactivos. El usuario deberá elegir un grupo de muestras de DNA, dependiendo del tipo de experimento que pretenda realizar; cabe mencionar que las muestras problema se cambian en cada pedido. A continuación debe elegir las enzimas o cebadores, entre aquellos compatibles con ese tipo de experimento.

 

 

2. Acceso al laboratorio, donde se dispondrá de las muestras y reactivos adquiridos anteriormente, junto al material habitual: tubos Eppendorf, micropipeta automática, incubador termostatizado o termociclador, según el caso (figura 1a).

 

3. Preparación por el usuario de las mezclas de reacción, según su propio diseño experimental. Se continúa con una etapa de incubación en la que tendrá lugar la fragmentación por restricción o bien la amplificación PCR (figura 1b).

 

 

4. Paso al laboratorio de electroforesis (figura 2). Las muestras se transfieren automáticamente desde el laboratorio anterior. El usuario selecciona el tipo de gel, las condiciones de la corriente eléctrica, carga las muestras y da comienzo a la separación. Tras unos segundos se dispone del resultado para poderlo analizar críticamente (figuras 3 y 4).

 

Se ofrecen algunos guiones de trabajo como ejemplo, en especial para aquellos usuarios menos experimentados. Cada profesor podrá diseñar para sus alumnos experimentos adaptados al programa docente de su asignatura en concreto. No obstante, el verdadero valor del laboratorio virtual está en la posibilidad de diseñar libremente los experimentos, dejando espacio para que el estudiante explore el efecto de alterar condiciones, cantidades, combinar las enzimas o cebadores, analizar nuevas muestras... Tal exploración puede ser muy significativa para una buena asimilación de los conceptos científicos de diagnóstico y metodológicos subyacentes y para entrenar las competencias de diseño experimental, observación y análisis de resultados propias de un investigador.

 

DISCUSIÓN

Las limitaciones inherentes al uso de determinadas muestras, técnicas e instrumentación en un laboratorio docente no deberían impedir que los estudiantes reciban una formación completa y actualizada, en el caso que nos ocupa respecto a los métodos de diagnóstico molecular y genético. El uso de simulaciones  puede llenar ese vacío formativo y es particularmente conveniente que aquellas constituyan verdaderos laboratorios virtuales, donde el experimentador tenga cierta libertad para diseñar el experimento, su realización sea lo más realista posible y los resultados obtenidos dependan de las operaciones realmente llevadas a cabo por el usuario. Es decir, no estamos hablando de animaciones o vídeos que siempre progresan del mismo modo y donde el resultado siempre es el correcto o esperado (aunque estos también tengan cierto valor formativo).

 

La herramienta presentada en este artículo permite la inclusión de estas prácticas virtuales o prácticas in silico en el currículo y, con ello, introducir a los alumnos en el conocimiento, esencial para su futuro profesional, de algunos de los métodos modernos de análisis del genoma, con aplicaciones diagnósticas así como en otros ámbitos profesionales (pruebas de identidad, análisis de alimentos...) Con su uso los estudiantes podrán asimismo conseguir en buena medida las mismas competencias que en un “laboratorio húmedo” convencional. 

 

ABREVIATURAS

AMEL: amelogenina.

CODIS: Combined DNA Index System, Sistemas de Índice Combinado de DNA, la base nacional de Estados Unidos con datos de perfiles genéticos, creada y mantenida por el FBI.

PCR: polymerase chain reaction, reacción en cadena de la polimerasa.

RFLP: restriction fragment length polymorphism, polimorfismo en la longitud de fragmentos de restricción.

STR: short tandem repeats, repeticiones cortas en tándem; un tipo de marcador genético polimórfico

 

REFERENCIAS

1. «Cibertorio», laboratorio virtual de biología molecular. Disponible en línea: http://biomodel.uah.es/lab/cibertorio/ (acceso en 5 julio 2017).

2. Licencia Pública GNU (GNU Public License). Disponible en línea: https://www.gnu.org/copyleft/gpl.html Descripción en https://es.wikipedia.org/wiki/GNU_General_Public_License (acceso en 5 julio 2017).

 

Nota:

Este artículo se ha publicado previamente con el título “Iniciación al diagnóstico genético: una aproximación a la medicina molecular” en la revista RIECS 2 (1), 22-27, www.riecs.es ©2017 J. C. Diez y A. Herráez, licencia CC-by.

 

Nota final:

Agradecemos el apoyo y las aportaciones de nuestra compañera Ana Isabel García Pérez, quien durante años ha utilizado de forma entusiasta este laboratorio con sus alumnos y, por ello, aportó a menudo ideas para mejorarlo.


¿Te ha gustado este artículo? Compártelo en las redes sociales: