Reference

DOI: 10.1038/ncomms12364naturensp 420

Authors

Ana López-Saavedra, Daniel Gómez-Cabello, María Salud Domínguez-Sánchez, Fernando Mejías-Navarro, María Jesús Fernández-Ávila, Christoffel Dinant, María Isabel Martínez-Macías, Jiri Bartek & Pablo Huertas

Abstract

There are two major and alternative pathways to repair DNA double-strand breaks: non-homologous end-joining and homologous recombination. Here we identify and characterize novel factors involved in choosing between these pathways; in this study we took advantage of the SeeSaw Reporter, in which the repair of double-strand breaks by homology-independent or -dependent mechanisms is distinguished by the accumulation of green or red fluorescence, respectively. Using a genome-wide human esiRNA (endoribonuclease-prepared siRNA) library, we isolate genes that control the recombination/end-joining ratio. Here we report that two distinct sets of genes are involved in the control of the balance between NHEJ and HR: those that are required to facilitate recombination and those that favour NHEJ. This last category includes CCAR2/DBC1, which we show inhibits recombination by limiting the initiation and the extent of DNA end resection, thereby acting as an antagonist of CtIP.

Description

Los daños más citotóxicos que se producen en el ADN son las roturas de doble cadena, que se reparan por dos mecanismos principales: unión de extremos no homólogos y recombinación homóloga. Utilizando un sistema que permite distinguir entre ambas vías de reparación, hemos identificado nuevos factores involucrados en la elección del método empleado para reparar. Entre ellos destacamos a CCAR2 y demostramos su papel como inhibidor de la recombinación homóloga, actuando como antagonista de la proteína CtIP.

 

Foto grupo1

 

REFERENCIA DEL GRUPO INVESTIGADOR

El grupo de investigación liderado por el Dr. Pablo Huertas Sánchez, ubicado en el Centro Andaluz de Biología Molecular y Medicina Regenerativa y perteneciente a la Universidad de Sevilla, estudia la regulación de la reparación de los cortes de doble cadena en el ADN. Este estudio se basa en la identificación y caracterización de nuevos factores implicados en la reparación y su relevancia en el desarrollo de enfermedades y su tratamiento.

Descárgate este artículo aquí.

Did you publish an interesting article recently?

Send it through our application form and we will contact you. Age limit: 32.

The selected articles will participate at the Fisher Scientific Prize which will be given during SEBBM conference, that will take place at Spain (free registration, travel and accommodation).

More articles of the month

Inactivation of Capicua in adult mice causes T-cell lymphoblastic lymphoma

01-12-2017

CIC (also known as Capicua) is a transcriptional repressor negatively regulated by RAS/MAPK signaling. Whereas the functions of Cic have been well characterized in Drosophila, little is known about its...

Read more

Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability

01-11-2017

During transcription, the mRNA may hybridize with DNA, forming an R loop, which can be physiological or pathological, constituting in this case a source of genomic instability. To understand the...

Read more

Whi7 is an unstable cell-cycle repressor of the Start transcriptional program

01-10-2017

Start is the main decision point in eukaryotic cell cycle in which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional program...

Read more

CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation

01-09-2017

In germinal centres (GC) mature B cells undergo intense proliferation and immunoglobulin gene modification before they differentiate into memory B cells or long-lived plasma cells (PC). GC B-cell-to-PC transition involves...

Read more

Catalytic Cycle of the N-Acetylglucosaminidase NagZ from Pseudomonas aeruginosa

01-08-2017

The N-acetylglucosaminidase NagZ of Pseudomonas aeruginosa catalyzes the first cytoplasmic step in recycling of muropeptides, cell-wall-derived natural products. This reaction regulates gene expression for the β-lactam resistance enzyme, β-lactamase. The...

Read more

Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice.

01-07-2017

CREBBP is targeted by inactivating mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Here, we provide evidence from transgenic mouse models that Crebbp deletion results in deficits...

Read more

Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver

01-06-2017

The type 2 immune response controls helminth infection and maintains tissue homeostasis but can lead to allergy and fibrosis if not adequately regulated. We have discovered local tissue-specific amplifiers of...

Read more

Programmed mitophagy is essential for the glycolytic switch during cell differentiation

01-05-2017

Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis-associated mouse RGC differentiation depends on mitophagy...

Read more

Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes

01-04-2017

The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, apoptosis regulator) can commit cells to apoptosis via outer mitochondrial membrane permeabilization. Bax activity is controlled in healthy cells by...

Read more

Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c

01-03-2017

Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone...

Read more

Protector Members