Reference

DOI 10.15252/embj.201695916 | The EMBO Journal (2017) e201695916 embomay2017

Authors

Lorena Esteban-Martínez, Elena Sierra-Filardi, Rebecca S McGreal, María Salazar-Roa, Guillermo Mariño, Esther Seco, Sylvère Durand, David Enot, Osvaldo Graña, Marcos Malumbres, Ales Cvekl, Ana María Cuervo, Guido Kroemer y Patricia Boya.

Abstract

Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis-associated mouse RGC differentiation depends on mitophagy, the programmed autophagic clearance of mitochondria. The elimination of mitochondria during RGC differentiation was coupled to a metabolic shift with increased lactate production and elevated expression of glycolytic enzymes at the mRNA level. Pharmacological and genetic inhibition of either mitophagy or glycolysis consistently inhibited RGC differentiation. Local hypoxia triggered expression of the mitophagy regulator BCL2/adenovirus E1B 19-kDa-interacting protein 3-like (BNIP3L, best known as NIX) at peak RGC differentiation. Retinas from NIX-deficient mice displayed increased mitochondrial mass, reduced expression of glycolytic enzymes and decreased neuronal differentiation. Similarly, we provide evidence that NIX-dependent mitophagy contributes to mitochondrial elimination during macrophage polarization towards the proinflammatory and more glycolytic M1 phenotype, but not to M2 macrophage differentiation, which primarily relies on oxidative phosphorylation. In summary, developmentally controlled mitophagy promotes a metabolic switch towards glycolysis, which in turn contributes to cellular differentiation in several distinct developmental contexts.

Description

La degradación de mitocondrias por autofagia o mitofagia, es esencial para producir una reprogramación metabólica hacia glicolisis que es necesaria para la diferenciación de las células ganglionares de la retina. Este proceso de mitofagia programada está regulado por NIX, un receptor de mitofagia cuya expresión incrementa por la hipoxia del tejido en desarrollo.

 

 

Fotos Boya LabSEBBM

 

REFERENCIA DEL GRUPO INVESTIGADOR

El laboratorio de Patricia Boya en el CIB-CSIC estudia por qué la autofagia es esencial para la correcta función de nuestras células y tejidos. Su trabajo se centra en entender las relaciones entre la autofagia y los procesos básicos como la proliferación, la diferenciación y la muerte celular y cómo alteraciones en autofagia pueden subyacer tras ciertas patologías como el cáncer y las enfermedades neurodegenerativas.

Ver más de este artículo aquí.

Did you publish an interesting article recently?

Send it through our application form and we will contact you. Age limit: 32.

The selected articles will participate at the Fisher Scientific Prize which will be given during SEBBM conference, that will take place at Spain (free registration, travel and accommodation).

More articles of the month

Inactivation of Capicua in adult mice causes T-cell lymphoblastic lymphoma

01-12-2017

CIC (also known as Capicua) is a transcriptional repressor negatively regulated by RAS/MAPK signaling. Whereas the functions of Cic have been well characterized in Drosophila, little is known about its...

Read more

Physical proximity of chromatin to nuclear pores prevents harmful R loop accumulation contributing to maintain genome stability

01-11-2017

During transcription, the mRNA may hybridize with DNA, forming an R loop, which can be physiological or pathological, constituting in this case a source of genomic instability. To understand the...

Read more

Whi7 is an unstable cell-cycle repressor of the Start transcriptional program

01-10-2017

Start is the main decision point in eukaryotic cell cycle in which cells commit to a new round of cell division. It involves the irreversible activation of a transcriptional program...

Read more

CTCF orchestrates the germinal centre transcriptional program and prevents premature plasma cell differentiation

01-09-2017

In germinal centres (GC) mature B cells undergo intense proliferation and immunoglobulin gene modification before they differentiate into memory B cells or long-lived plasma cells (PC). GC B-cell-to-PC transition involves...

Read more

Catalytic Cycle of the N-Acetylglucosaminidase NagZ from Pseudomonas aeruginosa

01-08-2017

The N-acetylglucosaminidase NagZ of Pseudomonas aeruginosa catalyzes the first cytoplasmic step in recycling of muropeptides, cell-wall-derived natural products. This reaction regulates gene expression for the β-lactam resistance enzyme, β-lactamase. The...

Read more

Crebbp loss cooperates with Bcl2 overexpression to promote lymphoma in mice.

01-07-2017

CREBBP is targeted by inactivating mutations in follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL). Here, we provide evidence from transgenic mouse models that Crebbp deletion results in deficits...

Read more

Local amplifiers of IL-4Rα-mediated macrophage activation promote repair in lung and liver

01-06-2017

The type 2 immune response controls helminth infection and maintains tissue homeostasis but can lead to allergy and fibrosis if not adequately regulated. We have discovered local tissue-specific amplifiers of...

Read more

Programmed mitophagy is essential for the glycolytic switch during cell differentiation

01-05-2017

Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis-associated mouse RGC differentiation depends on mitophagy...

Read more

Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes

01-04-2017

The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X, apoptosis regulator) can commit cells to apoptosis via outer mitochondrial membrane permeabilization. Bax activity is controlled in healthy cells by...

Read more

Histone chaperone activity of Arabidopsis thaliana NRP1 is blocked by cytochrome c

01-03-2017

Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone...

Read more

Protector Members