The role of cytokines in establishing specific transcriptional programmes in innate immune cells has long been recognized. However, little is known about how these extracellular factors instruct innate immune cell epigenomes to engage specific differentiation states. Human monocytes differentiate under inflammatory conditions into effector cells with non-redundant functions, such as dendritic cells and macrophages. In this context, interleukin 4 (IL-4) and granulocyte macrophage colony-stimulating factor (GM-CSF) drive dendritic cell differentiation, whereas GM-CSF alone leads to macrophage differentiation.

Here, we investigate the role of IL-4 in directing functionally relevant dendritic-cell-specific DNA methylation changes. A comparison of DNA methylome dynamics during differentiation from human monocytes to dendritic cells and macrophages identified gene sets undergoing dendritic-cell-specific or macrophage-specific demethylation. Demethylation is TET2-dependent and is essential for acquiring proper dendritic cell and macrophage identity. Most importantly, activation of the JAK3-STAT6 pathway, downstream of IL-4, is required for the acquisition of the dendritic-cell-specific demethylation and expression signature, following STAT6 binding. A constitutively activated form of STAT6 is able to bypass IL-4 upstream signalling and instruct dendritic-cell-specific functional DNA methylation changes.

Our study is the first description of a cytokine-mediated sequence of events leading to direct gene-specific demethylation in innate immune cell differentiation.

 

Different data support a role for the epidermal growth factor receptor (EGFR) pathway during liver regeneration and hepatocarcinogenesis. However, important issues, such as the precise mechanisms mediating its actions and the unique versus redundant functions, have not been fully defined. Here, we present a novel transgenic mouse model expressing a hepatocyte-specific truncated form of human EGFR, which acts as negative dominant mutant (ΔEGFR) and allows definition of its tyrosine kinase-dependent functions. Results indicate a critical role for EGFR catalytic activity during the early stages of liver regeneration. Thus, after two-thirds partial hepatectomy, ΔEGFR livers displayed lower and delayed proliferation and lower activation of proliferative signals, which correlated with overactivation of the transforming growth factor-β pathway. Altered regenerative response was associated with amplification of cytostatic effects of transforming growth factor-β through induction of cell cycle negative regulators. Interestingly, lipid synthesis was severely inhibited in ΔEGFR livers after partial hepatectomy, revealing a new function for EGFR kinase activity as a lipid metabolism regulator in regenerating hepatocytes. In spite of these profound alterations, ΔEGFR livers were able to recover liver mass by overactivating compensatory signals, such as c-Met. Our results also indicate that EGFR catalytic activity is critical in the early preneoplastic stages of the liver because ΔEGFR mice showed a delay in the appearance of diethyl-nitrosamine-induced tumors, which correlated with decreased proliferation and delay in the diethyl-nitrosamine-induced inflammatory process. Conclusion: These studies demonstrate that EGFR catalytic activity is critical during the initial phases of both liver regeneration and carcinogenesis and provide key mechanistic insights into how this kinase acts to regulate liver pathophysiology.

 

During the process of reprogramming to induced pluripotent stem (iPS) cells, somatic cells switch from oxidative to glycolytic metabolism, a transition associated with profound mitochondrial reorganization. Neither the importance of mitochondrial remodelling for cell reprogramming, nor the molecular mechanisms controlling this process are well understood. Here, we show that an early wave of mitochondrial fragmentation occurs upon expression of reprogramming factors. Reprogramming-induced mitochondrial fission is associated with a minor decrease in mitochondrial mass but not with mitophagy. The pro-fission factor Drp1 is phosphorylated early in reprogramming, and its knockdown and inhibition impairs both mitochondrial fragmentation and generation of iPS cell colonies. Drp1 phosphorylation depends on Erk activation in early reprogramming, which occurs, at least in part, due to downregulation of the MAP kinase phosphatase Dusp6. Taken together, our data indicate that mitochondrial fission controlled by an Erk-Drp1 axis constitutes an early and necessary step in the reprogramming process to pluripotency.

 

Plastid-to-nucleus retrograde signals emitted by dysfunctional chloroplasts impact photomorphogenic development, but the molecular link between retrograde- and photosensory-receptor signalling has remained unclear. Here, we show that the phytochrome and retrograde signalling (RS) pathways converge antagonistically to regulate the expression of the nuclear-encoded transcription factor GLK1, a key regulator of a light-induced transcriptional network central to photomorphogenesis. GLK1 gene transcription is directly repressed by PHYTOCHROME-INTERACTING FACTOR (PIF)-class bHLH transcription factors in darkness, but light-activated phytochrome reverses this activity, thereby inducing expression. Conversely, we show that retrograde signals repress this induction by a mechanism independent of PIF mediation. Collectively, our data indicate that light at moderate levels acts through the plant's nuclear-localized sensory-photoreceptor system to induce appropriate photomorphogenic development, but at excessive levels, sensed through the separate plastid-localized RS system, acts to suppress such development, thus providing a mechanism for protection against photo-oxidative damage by minimizing the tissue exposure to deleterious radiation.

 

Disrupted organ growth leads to disease development. Hypertrophy underlies postnatal heart growth and is triggered after stress, but the molecular mechanisms involved in these processes are largely unknown. Here we show that cardiac activation of p38γ and p38δ increases during postnatal development and by hypertrophy-inducing stimuli. p38γ/δ promote cardiac hypertrophy by phosphorylating the mTORC1 and mTORC2 inhibitor DEPTOR, which leads to its degradation and mTOR activation. Hearts from mice lacking one or both kinases are below normal size, have high levels of DEPTOR, low activity of the mTOR pathway and reduced protein synthesis. The phenotype of p38γ/δ−/− mice is reverted by overactivation of mTOR with amino acids, shRNA-mediated knockdown of Deptor, or cardiomyocyte overexpression of active p38γ and p38δ. Moreover, in WT mice, heart weight is reduced by cardiac overexpression of DEPTOR. Our results demonstrate that p38γ/δ control heart growth by modulating mTOR pathway through DEPTOR phosphorylation and subsequent degradation.

 

Socios Protectores