AIRAPL (arsenite-inducible RNA-associated protein-like) is an evolutionarily conserved regulator of cellular proteostasis linked to longevity in nematodes, but its biological function in mammals is unknown. We show herein that AIRAPL-deficient mice develop a fully-penetrant myeloproliferative neoplastic process. Proteomic analysis of AIRAPL-deficient mice revealed that this protein exerts its antineoplastic function through the regulation of the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. We demonstrate that AIRAPL interacts with newly synthesized insulin-related growth factor-1 receptor (IGF1R) polypeptides, promoting their ubiquitination and proteasome-mediated degradation. Accordingly, genetic and pharmacological IGF1R inhibitory strategies prevent the hematological disease found in AIRAPL-deficient mice as well as that in mice carrying the Jak2V617F mutation, thereby demonstrating the causal involvement of this pathway in the pathogenesis of myeloproliferative neoplasms. Consistent with its proposed role as a tumor suppressor of myeloid transformation, AIRAPL expression is widely abrogated in human myeloproliferative disorders. Collectively, these findings support the oncogenic relevance of proteostasis deregulation in hematopoietic cells, and they unveil novel therapeutic targets for these frequent hematological neoplasias.


Earlier in the past century, infections were regarded as the most likely cause of childhood B-cell precursor acute lymphoblastic leukemia (pB-ALL). However, there is a lack of relevant biologic evidence supporting this hypothesis. We present in vivo genetic evidence mechanistically connecting inherited susceptibility to pB-ALL and postnatal infections by showing that pB-ALL was initiated in Pax5 heterozygous mice only when they were exposed to common pathogens. Strikingly, these murine pB-ALLs closely resemble the human disease. Tumor exome sequencing revealed activating somatic, nonsynonymous mutations of Jak3 as a second hit. Transplantation experiments and deep sequencing suggest that inactivating mutations in Pax5 promote leukemogenesis by creating an aberrant progenitor compartment that is susceptible to malignant transformation through accumulation of secondary Jak3 mutations. Thus, treatment of Pax5+/− leukemic cells with specificJAK1/3 inhibitors resulted in increased apoptosis. These results uncover the causal role of infection in pB-ALL development.


Ageing constitutes a critical impediment to somatic cell reprogramming. We have explored the regulatory mechanisms that constitute age-associated barriers, through derivation of induced pluripotent stem cells (iPSCs) from individuals with premature or physiological ageing. We demonstrate that NF-κB activation blocks the generation of iPSCs in ageing. We also show that NF-κB repression occurs during cell reprogramming towards a pluripotent state. Conversely, ageing-associated NF-κB hyperactivation impairs the generation of iPSCs by eliciting the reprogramming repressor DOT1L, which reinforces senescence signals and downregulates pluripotency genes. Genetic and pharmacological NF-κB inhibitory strategies significantly increase the reprogramming efficiency of fibroblasts from Néstor–Guillermo progeria syndrome and Hutchinson–Gilford progeria syndrome patients, as well as from normal aged donors. Finally, we demonstrate that DOT1L inhibition in vivo extends lifespan and ameliorates the accelerated ageing phenotype of progeroid mice, supporting the interest of studying age-associated molecular impairments to identify targets of rejuvenation strategies.


The survival of commensal bacteria requires them to evade host peptidases. Gram-negative bacteria from the human gut microbiome encode a relative of the human endopeptidase inhibitor, α2-macroglobulin (α2M). Escherichia coli α2M (ECAM) is a ∼ 180-kDa multidomain membrane-anchored pan-peptidase inhibitor, which is cleaved by host endopeptidases in an accessible bait region. Structural studies by electron microscopy and crystallography reveal that this cleavage causes major structural rearrangement of more than half the 13-domain structure from a native to a compact induced form. It also exposes a reactive thioester bond, which covalently traps the peptidase. Subsequently, peptidase-laden ECAM is shed from the membrane and may dimerize. Trapped peptidases are still active except against very large substrates, so inhibition potentially prevents damage of large cell envelope components, but not host digestion. Mechanistically, these results document a novel monomeric "snap trap."


Despite the fact that microRNAs (miRNAs) modulate the expression of around 60% of protein-coding genes, it is often hard to elucidate their precise role and target genes. Studying miRNA families as opposed to single miRNAs alone increases our chances of observing not only mutant phenotypes but also changes in the expression of target genes. Here we ask whether the TGF-β signalling pathways, which control many animal processes, might be modulated by miRNAs in Caenorhabditis elegans. Using a mutant for four members of the mir-58 family, we show that both TGF-β Sma/Mab (controlling body size) and TGF-β Dauer (regulating dauer, a stress-resistant larval stage) are upregulated. Thus, mir-58 family directly inhibits the expression of dbl-1 (ligand), daf-1, daf-4 and sma-6 (receptors) of TGF-β pathways. Epistasis experiments reveal that whereas the small body phenotype of the mir-58 family mutant must invoke unknown targets independent from TGF-β Sma/Mab, its dauer defectiveness can be rescued by DAF-1 depletion. Additionally, we found a negative feedback loop between TGF-β Sma/Mab and mir-58 and the related mir-80. Our results suggest that the interaction between mir-58 family and TGF-β genes is key on decisions about animal growth and stress resistance in C. elegans and perhaps other organisms.


Socios Protectores