Reference

DOI: 10.1038/ncomms12364naturensp 420

Authors

Ana López-Saavedra, Daniel Gómez-Cabello, María Salud Domínguez-Sánchez, Fernando Mejías-Navarro, María Jesús Fernández-Ávila, Christoffel Dinant, María Isabel Martínez-Macías, Jiri Bartek & Pablo Huertas

Abstract

There are two major and alternative pathways to repair DNA double-strand breaks: non-homologous end-joining and homologous recombination. Here we identify and characterize novel factors involved in choosing between these pathways; in this study we took advantage of the SeeSaw Reporter, in which the repair of double-strand breaks by homology-independent or -dependent mechanisms is distinguished by the accumulation of green or red fluorescence, respectively. Using a genome-wide human esiRNA (endoribonuclease-prepared siRNA) library, we isolate genes that control the recombination/end-joining ratio. Here we report that two distinct sets of genes are involved in the control of the balance between NHEJ and HR: those that are required to facilitate recombination and those that favour NHEJ. This last category includes CCAR2/DBC1, which we show inhibits recombination by limiting the initiation and the extent of DNA end resection, thereby acting as an antagonist of CtIP.

Description

Los daños más citotóxicos que se producen en el ADN son las roturas de doble cadena, que se reparan por dos mecanismos principales: unión de extremos no homólogos y recombinación homóloga. Utilizando un sistema que permite distinguir entre ambas vías de reparación, hemos identificado nuevos factores involucrados en la elección del método empleado para reparar. Entre ellos destacamos a CCAR2 y demostramos su papel como inhibidor de la recombinación homóloga, actuando como antagonista de la proteína CtIP.

 

Foto grupo1

 

REFERENCIA DEL GRUPO INVESTIGADOR

El grupo de investigación liderado por el Dr. Pablo Huertas Sánchez, ubicado en el Centro Andaluz de Biología Molecular y Medicina Regenerativa y perteneciente a la Universidad de Sevilla, estudia la regulación de la reparación de los cortes de doble cadena en el ADN. Este estudio se basa en la identificación y caracterización de nuevos factores implicados en la reparación y su relevancia en el desarrollo de enfermedades y su tratamiento.

Descárgate este artículo aquí.

Did you publish an interesting article recently?

Send it through our application form and we will contact you. Age limit: 32.

The selected articles will participate at the Award to the best article of young people of the SEBBM which will be given during SEBBM conference, that will take place at Spain (free registration, travel and accommodation).

More articles of the month

Mechanisms of autoregulation of C3G, activator of the GTPase Rap1, and its catalytic deregulation in lymphomas

01-10-2020

C3G is a guanine nucleotide exchange factor (GEF) that regulates cell adhesion and migration by activating the GTPase Rap1. The GEF activity of C3G is stimulated by the adaptor proteins...

Read more

Expression of the long non-coding RNA TCL6 is associated with clinical outcome in pediatric B-cell acute lymphoblastic leukemia

31-08-2020

The reciprocal translocation t(12;21)(p13;q22)[ETV6/RUNX1] is the most frequent chromosomal rearrangement in pediatric B-cell acute lymphoblastic leukemia(B-ALL). Long non-coding RNAs (lncRNAs) play important roles in numerous diseases and they represent an...

Read more

Evaluation of different approaches used to study membrane permeabilization by actinoporins on model lipid vesicles

30-07-2020

Release of aqueous contents from model lipid vesicles has been a standard procedure to evaluate pore formation efficiency by actinoporins, such as sticholysin II (StnII), for the last few decades...

Read more

ADAR1-mediated RNA editing is a novel oncogenic process in thyroid cancer and regulates miR-200 activity

01-07-2020

Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. A-to-I editing of RNA is a widespread posttranscriptional process that has recently emerged as an important mechanism...

Read more

Sarcoplasmic reticulum Ca2+ decreases with age and correlates with the decline in muscle function in Drosophila

29-05-2020

Sarcopenia, the loss of muscle mass and strength associated with age, has been linked to impairment of the cytosolic Ca2+ peak that triggers muscle contraction, but mechanistic details remain unknown...

Read more

Structural basis for substrate specificity and catalysis of α1,6-fucosyltransferase

30-04-2020

Core-fucosylation is an essential biological modification by which a fucose is transferred from GDP-β-L-fucose to the innermost N-acetylglucosamine residue of N-linked glycans. A single human enzyme α1,6-fucosyltransferase (FUT8) is the...

Read more

Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3

31-03-2020

Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHT 178R ↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3...

Read more

Identification of distinct maturation steps involved in human 40S ribosomal subunit biosynthesis

29-02-2020

Technical problems intrinsic to the purification of preribosome intermediates have limited our understanding of ribosome biosynthesis in humans. Addressing this issue is important given the implication of this biological process...

Read more

Unraveling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis

23-01-2020

B-cell acute lymphoblastic leukemia is the commonest childhood cancer. In infants, B-cell acute lymphoblastic leukemia remains fatal, especially in patients with t(4;11), present in ~80% of cases. The pathogenesis of...

Read more

Mip6 binds directly to the Mex67 UBA domainto maintain low levels of Msn2/4 stress-dependent mRNAs

23-12-2019

RNA-binding proteins (RBPs) participate in all steps of gene expression, underscoring their potential as regulators of RNA homeostasis. We structurally and functionally characterize Mip6, a four-RNA recognition motif (RRM)-containing RBP...

Read more

Protector Members