Reference

Nucleic Acids Res. (2017) 45 (4): 2150-2165.NAR cover baja calidad

Authors

Katiuska González-Arzola, Antonio Díaz-Quintana, Francisco Rivero-Rodríguez, Adrián Velázquez-Campoy, Miguel A. De la Rosa and Irene Díaz-Moreno.

Abstract

Higher-order plants and mammals use similar mechanisms to repair and tolerate oxidative DNA damage. Most studies on the DNA repair process have focused on yeast and mammals, in which histone chaperone-mediated nucleosome disassembly/reassembly is essential for DNA to be accessible to repair machinery. However, little is known about the specific role and modulation of histone chaperones in the context of DNA damage in plants. Here, the histone chaperone NRP1, which is closely related to human SET/TAF-Iβ was found to exhibit nucleosome assembly activity in vitro and to accumulate in the chromatin of A. thaliana after DNA breaks. In addition, this work establishes that NRP1 binds to cytochrome c, thereby preventing the former from binding to histones. Since NRP1 interacts with cytochrome c at its earmuff domain, that is, its histone-binding domain, cytochrome c thus competes with core histones and hampers the activity of NRP1 as a histone chaperone. Altogether, the results obtained indicate that the underlying molecular mechanisms in nucleosome disassembly/reassembly are highly conserved throughout evolution, as inferred from the similar inhibition of plant NRP1 and human SET/TAF-Iβ by cytochrome c during DNA damage response.

Description

En este estudio los autores revelan el papel del citocromo c en la regulación de la reparación de las roturas en el ADN en plantas. Dicha regulación se basa en la inhibición de la chaperona de histonas NRP1, homóloga de la proteína humana SET/TAF-Iβ. La inhibición de la chaperona humana SET/TAF-Iβ por el citocromo c ha sido demostrada por los autores en un trabajo reciente [1]. Los autores proponen la existencia de rutas de regulación del daño en el ADN centradas en el citocromo c, conservadas a lo largo de la evolución.

[1] González-Arzola K, et al. (2015) Proc. Natl. Acad. Sci. USA 112: 9908-9913.

 

Foto grupo Baja calidad

 

REFERENCIA DEL GRUPO INVESTIGADOR

Uno de los objetivos del grupo es el análisis estructural y funcional de las macromoléculas biológicas, así como de las interacciones transitorias proteína-proteína y proteína-ácido nucleico, que son claves en una amplia variedad de procesos celulares. También tratamos de profundizar en el análisis de las modificaciones post-traduccionales de las proteínas y, en particular, del citocromo c (Cc) y su papel en la regulación de la muerte celular programada (PCD).

Descárgate este artículo aquí.

Did you publish an interesting article recently?

Send it through our application form and we will contact you. Age limit: 32.

The selected articles will participate at the Award to the best article of young people of the SEBBM which will be given during SEBBM conference, that will take place at Spain (free registration, travel and accommodation).

More articles of the month

The structure of a polygamous repressor reveals how phage-inducible chromosomal islands spread in nature

01-11-2019

Stl is a master repressor encoded by Staphylococcus aureus pathogenicity islands (SaPIs) that maintains integration of these elements in the bacterial chromosome. After infection or induction of a resident helper...

Read more

Self-Assembling ELR-Based Nanoparticles as Smart Drug-Delivery Systems Modulating Cellular Growth via Akt

01-10-2019

This work investigates the physicochemical properties and in vitro accuracy of a genetically engineered drug delivery system based on elastin-like block recombinamers. The DNA recombinant technics allowed us to create...

Read more

Structure–Function of MamC Loop and Its Effect on the *in Vitro* Precipitation of Biomimetic Magnetite Nanoparticles

01-09-2019

MamC, an integral protein of the magnetosome membrane, has recently been proposed as a strong candidate to produce biomimetic (magnetosome-like) magnetite nanoparticles that could be used as an alternative to...

Read more

Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction

01-08-2019

Actinoporins are a group of soluble toxic proteins that bind to membranes containing sphingomyelin (SM) and oli- gomerize to form pores. Sticholysin II (StnII) is a member of the actinoporin...

Read more

Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour

01-07-2019

To satisfy its high energetic demand, the brain depends on the metabolic cooperation of various cell types. For example, astrocytic-derived lactate sustains memory consolidation by serving both as an oxidizable...

Read more

Glucose restriction promotes osteocyte specification by activating a PGC-1α-dependent transcriptional program

03-06-2019

Osteocytes, the most abundant of bone cells, differentiate while they remain buried within the bone matrix. This encasement limits their access to nutrients and likely affects their differentiation, a process...

Read more

ParB dynamics and the critical role of the CTD in DNA condensation unveiled by combined force-fluorescence measurements

01-05-2019

/Bacillus subtilis/ ParB forms multimeric networks involving non-specific DNA binding leading to DNA condensation. Previously, we found that an excess of the free C-terminal domain (CTD) of ParB impeded DNA...

Read more

Therapeutic targeting of HER2-CB2R heteromers in HER2-positive breast cancer

01-04-2019

Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New...

Read more

p73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton

01-03-2019

Planar cell polarity (PCP) and intercellular junctional complexes establish tissue structure and coordinated behaviors across epithelial sheets. In multiciliated ependymal cells, rotational and translational PCP coordinate cilia beating and direct...

Read more

β‐RA reduces DMQ/CoQ ratio and rescues the encephalopathic phenotype in Coq9R239X mice

01-02-2019

Coenzyme Q (CoQ) deficiency has been associated with primary defects in the CoQ biosynthetic pathway or to secondary events. In some cases, the exogenous CoQ supplementation has limited efficacy. In...

Read more

Protector Members