Reference

DOI 10.15252/embj.201695916 | The EMBO Journal (2017) e201695916 embomay2017

Authors

Lorena Esteban-Martínez, Elena Sierra-Filardi, Rebecca S McGreal, María Salazar-Roa, Guillermo Mariño, Esther Seco, Sylvère Durand, David Enot, Osvaldo Graña, Marcos Malumbres, Ales Cvekl, Ana María Cuervo, Guido Kroemer y Patricia Boya.

Abstract

Retinal ganglion cells (RGCs) are the sole projecting neurons of the retina and their axons form the optic nerve. Here, we show that embryogenesis-associated mouse RGC differentiation depends on mitophagy, the programmed autophagic clearance of mitochondria. The elimination of mitochondria during RGC differentiation was coupled to a metabolic shift with increased lactate production and elevated expression of glycolytic enzymes at the mRNA level. Pharmacological and genetic inhibition of either mitophagy or glycolysis consistently inhibited RGC differentiation. Local hypoxia triggered expression of the mitophagy regulator BCL2/adenovirus E1B 19-kDa-interacting protein 3-like (BNIP3L, best known as NIX) at peak RGC differentiation. Retinas from NIX-deficient mice displayed increased mitochondrial mass, reduced expression of glycolytic enzymes and decreased neuronal differentiation. Similarly, we provide evidence that NIX-dependent mitophagy contributes to mitochondrial elimination during macrophage polarization towards the proinflammatory and more glycolytic M1 phenotype, but not to M2 macrophage differentiation, which primarily relies on oxidative phosphorylation. In summary, developmentally controlled mitophagy promotes a metabolic switch towards glycolysis, which in turn contributes to cellular differentiation in several distinct developmental contexts.

Description

La degradación de mitocondrias por autofagia o mitofagia, es esencial para producir una reprogramación metabólica hacia glicolisis que es necesaria para la diferenciación de las células ganglionares de la retina. Este proceso de mitofagia programada está regulado por NIX, un receptor de mitofagia cuya expresión incrementa por la hipoxia del tejido en desarrollo.

 

 

Fotos Boya LabSEBBM

 

REFERENCIA DEL GRUPO INVESTIGADOR

El laboratorio de Patricia Boya en el CIB-CSIC estudia por qué la autofagia es esencial para la correcta función de nuestras células y tejidos. Su trabajo se centra en entender las relaciones entre la autofagia y los procesos básicos como la proliferación, la diferenciación y la muerte celular y cómo alteraciones en autofagia pueden subyacer tras ciertas patologías como el cáncer y las enfermedades neurodegenerativas.

Ver más de este artículo aquí.

Did you publish an interesting article recently?

Send it through our application form and we will contact you. Age limit: 32.

The selected articles will participate at the Award to the best article of young people of the SEBBM which will be given during SEBBM conference, that will take place at Spain (free registration, travel and accommodation).

More articles of the month

Mechanisms of autoregulation of C3G, activator of the GTPase Rap1, and its catalytic deregulation in lymphomas

01-10-2020

C3G is a guanine nucleotide exchange factor (GEF) that regulates cell adhesion and migration by activating the GTPase Rap1. The GEF activity of C3G is stimulated by the adaptor proteins...

Read more

Expression of the long non-coding RNA TCL6 is associated with clinical outcome in pediatric B-cell acute lymphoblastic leukemia

31-08-2020

The reciprocal translocation t(12;21)(p13;q22)[ETV6/RUNX1] is the most frequent chromosomal rearrangement in pediatric B-cell acute lymphoblastic leukemia(B-ALL). Long non-coding RNAs (lncRNAs) play important roles in numerous diseases and they represent an...

Read more

Evaluation of different approaches used to study membrane permeabilization by actinoporins on model lipid vesicles

30-07-2020

Release of aqueous contents from model lipid vesicles has been a standard procedure to evaluate pore formation efficiency by actinoporins, such as sticholysin II (StnII), for the last few decades...

Read more

ADAR1-mediated RNA editing is a novel oncogenic process in thyroid cancer and regulates miR-200 activity

01-07-2020

Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine in double-stranded RNA. A-to-I editing of RNA is a widespread posttranscriptional process that has recently emerged as an important mechanism...

Read more

Sarcoplasmic reticulum Ca2+ decreases with age and correlates with the decline in muscle function in Drosophila

29-05-2020

Sarcopenia, the loss of muscle mass and strength associated with age, has been linked to impairment of the cytosolic Ca2+ peak that triggers muscle contraction, but mechanistic details remain unknown...

Read more

Structural basis for substrate specificity and catalysis of α1,6-fucosyltransferase

30-04-2020

Core-fucosylation is an essential biological modification by which a fucose is transferred from GDP-β-L-fucose to the innermost N-acetylglucosamine residue of N-linked glycans. A single human enzyme α1,6-fucosyltransferase (FUT8) is the...

Read more

Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3

31-03-2020

Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHT 178R ↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3...

Read more

Identification of distinct maturation steps involved in human 40S ribosomal subunit biosynthesis

29-02-2020

Technical problems intrinsic to the purification of preribosome intermediates have limited our understanding of ribosome biosynthesis in humans. Addressing this issue is important given the implication of this biological process...

Read more

Unraveling the cellular origin and clinical prognostic markers of infant B-cell acute lymphoblastic leukemia using genome-wide analysis

23-01-2020

B-cell acute lymphoblastic leukemia is the commonest childhood cancer. In infants, B-cell acute lymphoblastic leukemia remains fatal, especially in patients with t(4;11), present in ~80% of cases. The pathogenesis of...

Read more

Mip6 binds directly to the Mex67 UBA domainto maintain low levels of Msn2/4 stress-dependent mRNAs

23-12-2019

RNA-binding proteins (RBPs) participate in all steps of gene expression, underscoring their potential as regulators of RNA homeostasis. We structurally and functionally characterize Mip6, a four-RNA recognition motif (RRM)-containing RBP...

Read more

Protector Members