Reference

Nature medicine. 2018;24(7):1024-35. https://doi.org/10.1038/s41591-018-0044-4 Nature Medicine volume 24 2018 1

Authors

Neibla Priego, Lucía Zhu, Cátia Monteiro, Manon Mulders, David Wasilewski, Wendy Bindeman, Laura Doglio, Liliana Martínez, Elena Martínez-Saez, Santiago Ramón y Cajal, Diego Megías, Elena Hernández-Encinas, Carmen Blanco-Aparicio, Lola Martínez, Eduardo Zarzuela, Javier Muñoz, Coral Fustero-Torre, Elena Piñeiro-Yáñez, Aurelio Hernández-Laín, Luca Bertero, Valeria Poli, Melchor Sanchez-Martinez, Javier A. Menendez, Riccardo Soffietti, Joaquim Bosch-Barrera & Manuel Valiente.

Abstract

The brain microenvironment imposes a particularly intense selective pressure on metastasis-initiating cells, but successful metastases bypass this control through mechanisms that are poorly understood. Reactive astrocytes are key components of this microenvironment that confine brain metastasis without infiltrating the lesion. Here, we describe that brain metastatic cells induce and maintain the co-option of a pro-metastatic program driven by signal transducer and activator of transcription 3 (STAT3) in a subpopulation of reactive astrocytes surrounding metastatic lesions. These reactive astrocytes benefit metastatic cells by their modulatory effect on the innate and acquired immune system. In patients, active STAT3 in reactive astrocytes correlates with reduced survival from diagnosis of intracranial metastases. Blocking STAT3 signaling in reactive astrocytes reduces experimental brain metastasis from different primary tumor sources, even at advanced stages of colonization. We also show that a safe and orally bioavailable treatment that inhibits STAT3 exhibits significant antitumor effects in patients with advanced systemic disease that included brain metastasis. Responses to this therapy were notable in the central nervous system, where several complete responses were achieved. Given that brain metastasis causes substantial morbidity and mortality, our results identify a novel treatment for increasing survival in patients with secondary brain tumors.

 

Description

En este trabajo hemos descrito que las células tumorales con distintos orígenes primarios que metastatizan al cerebro, son capaces de activar el factor de transcripción STAT3 en una subpoblación de astrocitos reactivos, bloqueando así la acción de distintos componentes del sistema inmune innato y adaptativo. Bloqueando la activación de STAT3 en los astrocitos reactivos, se produce una disminución de la metástasis cerebral en modelos animales y en pacientes humanos.

 

 

Brain Metastasis Group CNIO 1

 

REFERENCIA DEL GRUPO INVESTIGADOR

En el grupo de Metástasis cerebral del CNIO, establecido en el año 2015, buscamos entender la biología de la metástasis cerebral usando distintos modelos experimentales para encontrar nuevas dianas terapéuticas, con el fin de mejorar el tratamiento actual y esperanza de vida de los pacientes que sufren esta enfermedad. Para ello trabajamos con ratones modificados genéticamente o xenoinjertos derivados de pacientes (PDX) entre otras aproximaciones experimentales y aplicamos distintas terapias sistémicas o locales a nuestros modelos.

 Descargar el artículo 

Did you publish an interesting article recently?

Send it through our application form and we will contact you. Age limit: 32.

The selected articles will participate at the Award to the best article of young people of the SEBBM which will be given during SEBBM conference, that will take place at Spain (free registration, travel and accommodation).

More articles of the month

Sticholysin, Sphingomyelin, and Cholesterol: A Closer Look at a Tripartite Interaction

01-08-2019

Actinoporins are a group of soluble toxic proteins that bind to membranes containing sphingomyelin (SM) and oli- gomerize to form pores. Sticholysin II (StnII) is a member of the actinoporin...

Read more

Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour

01-07-2019

To satisfy its high energetic demand, the brain depends on the metabolic cooperation of various cell types. For example, astrocytic-derived lactate sustains memory consolidation by serving both as an oxidizable...

Read more

Glucose restriction promotes osteocyte specification by activating a PGC-1α-dependent transcriptional program

03-06-2019

Osteocytes, the most abundant of bone cells, differentiate while they remain buried within the bone matrix. This encasement limits their access to nutrients and likely affects their differentiation, a process...

Read more

ParB dynamics and the critical role of the CTD in DNA condensation unveiled by combined force-fluorescence measurements

01-05-2019

/Bacillus subtilis/ ParB forms multimeric networks involving non-specific DNA binding leading to DNA condensation. Previously, we found that an excess of the free C-terminal domain (CTD) of ParB impeded DNA...

Read more

Therapeutic targeting of HER2-CB2R heteromers in HER2-positive breast cancer

01-04-2019

Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New...

Read more

p73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton

01-03-2019

Planar cell polarity (PCP) and intercellular junctional complexes establish tissue structure and coordinated behaviors across epithelial sheets. In multiciliated ependymal cells, rotational and translational PCP coordinate cilia beating and direct...

Read more

β‐RA reduces DMQ/CoQ ratio and rescues the encephalopathic phenotype in Coq9R239X mice

01-02-2019

Coenzyme Q (CoQ) deficiency has been associated with primary defects in the CoQ biosynthetic pathway or to secondary events. In some cases, the exogenous CoQ supplementation has limited efficacy. In...

Read more

Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons

02-01-2019

Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons, a process that current therapeutic approaches cannot prevent. In PD, the typical pathological hallmark is the accumulation of...

Read more

Dynamic acetylation of cytosolic phosphoenolpyruvate carboxykinase toggles enzyme activity between gluconeogenic and anaplerotic reactions

01-12-2018

Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts...

Read more

The Helicase PIF1 Facilitates Resection overSequences Prone to Forming G4 Structures

02-11-2018

DNA breaks are complex lesions that can be repaired either by non-homologous end joining (NHEJ) or by homologous recombination (HR). The decision between these two routes of DNA repair is...

Read more

Protector Members