Referencia

Proc Natl Acad Sci USA 2012; 109 (34): 13805-13810. doi: 10.1073/pnas.1206187109.

Autores

María-Ángeles Nohales, Ricardo Flores y José-Antonio Daròs

Resumen

Viroids are a unique class of noncoding RNAs: composed of only a circular, single-stranded molecule of 246-401 nt, they manage to replicate, move, circumvent host defenses, and frequently induce disease in higher plants. Viroids replicate through an RNA-to-RNA rolling-circle mechanism consisting of transcription of oligomeric viroid RNA intermediates, cleavage to unit-length strands, and circularization. Though the host RNA polymerase II (redirected to accept RNA templates) mediates RNA synthesis and a type-III RNase presumably cleavage of Potato spindle tuber viroid (PSTVd) and closely related members of the family Pospiviroidae, the host enzyme catalyzing the final circularization step, has remained elusive. In this study we propose that PSTVd subverts host DNA ligase 1, converting it to an RNA ligase, for the final step. To support this hypothesis, we show that the tomato (Solanum lycopersicum L.) DNA ligase 1 specifically and efficiently catalyzes circularization of the genuine PSTVd monomeric linear replication intermediate opened at position G95-G96 and containing 5′-phosphomonoester and 3′-hydroxyl terminal groups. Moreover, we also show a decreased PSTVd accumulation and a reduced ratio of monomeric circular to total monomeric PSTVd forms in Nicotiana benthamiana Domin plants in which the endogenous DNA ligase 1 was silenced. Thus, in a remarkable example of parasitic strategy, viroids reprogram for their replication the template and substrate specificity of a DNA-dependent RNA polymerase and a DNA ligase to act as RNA-dependent RNA polymerase and RNA ligase, respectively.

Descripción

Los viroides son pequeños RNAs circulares no codificantes que infectan plantas. Se replican a través de un mecanismo de círculo rodante con intermediarios de RNA que consta de la síntesis de RNAs viroidales oligoméricos, su corte a monómeros y la circularización de estos últimos. Este estudio muestra como el viroide del tubérculo fusiforme de la patata (PSTVd) es capaz de subvertir la actividad de la DNA ligasa 1 de su huésped (tomate), convirtiéndola en una RNA ligasa, para que catalice su circularización durante el paso final de su replicación.

imagen agosto

REFERENCIA DEL GRUPO INVESTIGADOR

El grupo de “Biotecnología de Virus de Plantas” que dirige el Dr. José Antonio Darós Arnau en el Instituto de Biología Molecular y Celular de Plantas (CSIC-Universidad Politécnica de Valencia) investiga la interacción que se produce entre las plantas y algunos de sus patógenos virales y subvirales. Con el estudio de esta interacción se pretende entender algunos aspectos básicos del funcionamiento de las biomoléculas, así como desarrollar herramientas biotecnológicas para la protección, mejora e innovación en los cultivos.

Para ver el artículo completo, pulse aqui

Más artículos en la revista SEBBM.

Did you publish an interesting article recently?

Send it through our application form and we will contact you. Age limit: 32.

The selected articles will participate at the Award to the best article of young people of the SEBBM which will be given during SEBBM conference, that will take place at Spain (free registration, travel and accommodation).

More articles of the month

Glucose restriction promotes osteocyte specification by activating a PGC-1α-dependent transcriptional program

03-06-2019

Osteocytes, the most abundant of bone cells, differentiate while they remain buried within the bone matrix. This encasement limits their access to nutrients and likely affects their differentiation, a process...

Read more

ParB dynamics and the critical role of the CTD in DNA condensation unveiled by combined force-fluorescence measurements

01-05-2019

/Bacillus subtilis/ ParB forms multimeric networks involving non-specific DNA binding leading to DNA condensation. Previously, we found that an excess of the free C-terminal domain (CTD) of ParB impeded DNA...

Read more

Therapeutic targeting of HER2-CB2R heteromers in HER2-positive breast cancer

01-04-2019

Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New...

Read more

p73 regulates ependymal planar cell polarity by modulating actin and microtubule cytoskeleton

01-03-2019

Planar cell polarity (PCP) and intercellular junctional complexes establish tissue structure and coordinated behaviors across epithelial sheets. In multiciliated ependymal cells, rotational and translational PCP coordinate cilia beating and direct...

Read more

β‐RA reduces DMQ/CoQ ratio and rescues the encephalopathic phenotype in Coq9R239X mice

01-02-2019

Coenzyme Q (CoQ) deficiency has been associated with primary defects in the CoQ biosynthetic pathway or to secondary events. In some cases, the exogenous CoQ supplementation has limited efficacy. In...

Read more

Small molecule inhibits α-synuclein aggregation, disrupts amyloid fibrils, and prevents degeneration of dopaminergic neurons

02-01-2019

Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons, a process that current therapeutic approaches cannot prevent. In PD, the typical pathological hallmark is the accumulation of...

Read more

Dynamic acetylation of cytosolic phosphoenolpyruvate carboxykinase toggles enzyme activity between gluconeogenic and anaplerotic reactions

01-12-2018

Cytosolic phosphoenolpyruvate carboxykinase (PCK1) is considered a gluconeogenic enzyme; however, its metabolic functions and regulatory mechanisms beyond gluconeogenesis are poorly understood. Here, we describe that dynamic acetylation of PCK1 interconverts...

Read more

The Helicase PIF1 Facilitates Resection overSequences Prone to Forming G4 Structures

02-11-2018

DNA breaks are complex lesions that can be repaired either by non-homologous end joining (NHEJ) or by homologous recombination (HR). The decision between these two routes of DNA repair is...

Read more

Preventing loss of mechanosensation by the nuclear membranes of alveolar cells reduces lung injury in mice during mechanical ventilation

01-10-2018

The nuclear membrane acts as a mechanosensor that drives cellular responses following changes in the extracellular environment. Mechanically ventilated lungs are exposed to an abnormally high mechanical load that may...

Read more

Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria

03-09-2018

Respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 in the postischemic brain upon neuroprotective insulin treatment, but how such posttranslational modification affects mitochondrial metabolism is unclear...

Read more

Protector Members